Main pageContacts
Русский языкEnglish language

«Наша цель - организовать в России не только несколько крупных предприятий, но и полноценное содружество нано- технологической отрасли, где будут предствалены все направления бизнеса: частный и государственный бизнес, вплоть до транснациональных компаний»


Дмитрий Медведев,
Президент Российской Федерации.
Пленарное заседание Третьего Международного Форума по нано- технологиям, 3 ноября 2010 г.
Видеозапись выступления Президента РФ Дмитрия Медведева на III Международном Форуме по нанотехнологиям
 

Лица Форума

Анатолий Чубайс Анатолий Чубайс

Генеральный директор ГК «Роснанотех»

Выступление на пленарном заседании Форума 2010 г.

Сергей Иванов Сергей Иванов

Заместитель председателя Правительства РФ, председатель организационного комитета RUSNANOTECH 2010 Сергей Иванов
Видеозапись церемонии открытия III Международного форума по нанотехнологиям

Жорес Алферов Жорес Алферов

Лауреат Нобелевской премии, академик Жорес Алферов
Видеозапись церемонии открытия III Международного форума по нанотехнологиям

Стив Балмер Стив Балмер
Константин Новоселов Константин Новоселов

Нобелевский лауреат по физике 2010 года Константин Новоселов

Видеозапись пресс-лекции Нобелевского лауреата по физике 2010 года Константина Новоселова

Дмитрий Свергун Дмитрий Свергун

Лауреат Международной премии в области нанотехнологий RUSNANOPRIZE 2010,

Руководитель группы Европейской молекулярно-биологической лаборатории, Дмитрий Свергун

Лев Фейгин Лев Фейгин

Лауреат Международной премии в области нанотехнологий RUSNANOPRIZE 2010

Главный научный сотрудник Института кристаллографии РАН, профессор Лев Фейгин

Питер Лагнер Питер Лагнер

Лауреат Международной премии в области нанотехнологий RUSNANOPRIZE 2010,

Генеральный директор компании Hecus X-ray Systems Gmbh (Австрия), профессор Питер Лагнер

Марина Галкина Марина Галкина

Лауреат Российской молодежной премии в области наноиндустрии,

Старший научный сотрудник научно-исследовательской лаборатории проблем разработки и внедрения ионно-плазменных технологий Белгородского государственного университета, Марина Галкина

Дрю Гафф Дрю Гафф

Управляющий директор и основатель инвестиционного венчурного фонда «Сигулер, Гафф и Ко» Дрю Гафф

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Сергей Гуриев Сергей Гуриев

Ректор Российской Экономической Школы, профессор Сергей Гуриев

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Александр Галицкий Александр Галицкий

Кандидат технических наук, управляющий партнер Алмаз Кэпитал Партнерс Александр Галицкий

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Владимир Познер Владимир Познер

Ведущий пленарной дискуссии, Владимир Познер

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Андрей Гудков Андрей Гудков

Старший вице-президент Центра по изучению рака в Роузвелл-Парк, профессор Андрей Гудков

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Виктор Вексельберг Виктор Вексельберг

Председатель совета директоров группы компаний Ренова, координатор проекта «Сколково» Виктор Вексельберг

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Нанотехнологам удалось создать мельницу на лазере

Нанотехнологи создали уникальную технологию превращения света в механическую энергию. Нанороторы идеально подходят для решения многих микробиологических задач. Ученым даже удалось заставить их вращаться в разные стороны.

Инженеры из американской Национальной лаборатории имени Лоуренса в Беркли совершили прорыв в области наномеханизмов, создав микроскопическую световую мельницу, приводимую в движение лучом лазера. Мотор, созданный группой ученых под руководством исследователя Сян Чжана (Xiang Zhang), может вращаться в двух направлениях, причем направление вращения задает частота лазерного излучения.

«Мы продемонстрировали плазмонный двигатель размером всего 100 нм, который под облучением линейно поляризованным светом может передавать крутящий момент, достаточный для вращения диска, в 4 тыс. раз большего по размерам», — пояснил доктор Чжан. Ученым уже удалось создать целый массив подобных мельниц, которые в будущем смогут эффективно утилизировать энергию светового излучения. В основу изобретения положен тот факт, что силу взаимодействия света с веществом можно значительно увеличить, если падающее излучение входит в резонанс с так называемыми поверхностными плазмонами — волнами электронной плотности, возникающими на поверхности твердых тел в результате коллективных колебаний электронов. Нанотурбина

Группа Чжана сконструировала нанотурбинку, напоминающую по форме древний солнечный символ, из золота, так, чтобы максимально увеличить взаимодействие света с веществом. «Плоские свастикообразные золотые структуры могут рассматриваться как совокупность четырех LC-контуров, резонансные частоты которых определяются геометрией и диэлектрическими свойствами металла», — пояснил Чжан. Получаемый крыльчаткой угловой момент возникает благодаря симметрии фигуры и ее взаимодействию с падающим светом.

Ученые считают, что их открытие поможет решить множество прикладных и теоретических задач. Известно, что отдельно взятый фотон (квант электромагнитного излучения) несет в себе как импульс, так и угловой момент. Такие научные приборы, как оптические пинцеты и оптические ловушки, к примеру, основаны на способности фотонов отдавать свой импульс. В 1936 году физик Принстонского университета Ричард Бет доказал, что фотон, рассеиваясь или поглощаясь твердым веществом, способен поделиться своим угловым моментом, то есть закрутить предмет, на который он упал. Все последующие попытки утилизировать момент отдельных фотонов излучения не увенчались успехом ввиду чрезвычайно слабого взаимодействия между фотонами и веществом. Вместо ветряка — «светляк»

«Типичный мотор должен быть размером как минимум в микрометры или миллиметры, чтобы производить нужное количество крутящего момента. Мы показали, что в наноструктурах, подобных нашей золотой мельнице, передаваемый угловой момент значительно усиливается при совпадении длин волн падающего света с плазмонными волнами. Производительность наших моторов очень велика. В качестве бонуса мы получили возможность управлять направлением вращения, что сложно реализовать, скажем, в ветряках», — пояснил соавтор исследования Мин Лю.

Реализовать вращение ротора в разные стороны удалось на двух длинах лазера — 810 и 1700 нм. Освещенная гауссовым пучком лазера с меньшей длиной волны фигурка вращается против часовой стрелки с частотой 3 оборота в секунду. Переключив лазер на большую длину волны, ученые заставляют ротор вращаться с той же скоростью, но в другую сторону. Дело в том, что при длине волны 810 нм свет воздействует на внешние стороны лопастей (на рисунке — слева), вращая их против часовой стрелки, а при 1700 нм — на внутренние (на рисунке — справа), вращая их в обратную сторону. Наноскопические размеры крыльчатки обещают найти ей множество применений, в первую очередь для наноэлектромеханических устройств (NEMS), в которых размеры важнее КПД.

Компактные вращающиеся роторы должны найти применение в решении многих микробиологических задач, в том числе для раскрутки и закрутки двойных спиралей ДНК. «А спроектировав моторы для работы на разных резонансных частотах и в одном направлении, мы можем получать крутящий момент из множества длин волн, представленных в солнечном свете», — добавил Лю. Статья ученых опубликована в журнале Nature Nanotechnology.

Infox.ru, 06.07.2010

06.07.2010



Версия для печати   Вернуться в раздел   Вернуться на главную

Дирекция Форума Фонд содействия развитию нанотехнологий
«Форум Роснанотех»
117036, Россия, Москва, проспект 60-летия Октября, 10А
Тел.: +7 (495) 542-44-44,
факс: +7 (495) 988-56-82
e-mail: rusnanoforum2010@rusnano.com
www.rusnanoforum.ru