Main pageContacts
Русский языкEnglish language

«Наша цель - организовать в России не только несколько крупных предприятий, но и полноценное содружество нано- технологической отрасли, где будут предствалены все направления бизнеса: частный и государственный бизнес, вплоть до транснациональных компаний»


Дмитрий Медведев,
Президент Российской Федерации.
Пленарное заседание Третьего Международного Форума по нано- технологиям, 3 ноября 2010 г.
Видеозапись выступления Президента РФ Дмитрия Медведева на III Международном Форуме по нанотехнологиям
 

Лица Форума

Анатолий Чубайс Анатолий Чубайс

Генеральный директор ГК «Роснанотех»

Выступление на пленарном заседании Форума 2010 г.

Сергей Иванов Сергей Иванов

Заместитель председателя Правительства РФ, председатель организационного комитета RUSNANOTECH 2010 Сергей Иванов
Видеозапись церемонии открытия III Международного форума по нанотехнологиям

Жорес Алферов Жорес Алферов

Лауреат Нобелевской премии, академик Жорес Алферов
Видеозапись церемонии открытия III Международного форума по нанотехнологиям

Стив Балмер Стив Балмер
Константин Новоселов Константин Новоселов

Нобелевский лауреат по физике 2010 года Константин Новоселов

Видеозапись пресс-лекции Нобелевского лауреата по физике 2010 года Константина Новоселова

Дмитрий Свергун Дмитрий Свергун

Лауреат Международной премии в области нанотехнологий RUSNANOPRIZE 2010,

Руководитель группы Европейской молекулярно-биологической лаборатории, Дмитрий Свергун

Лев Фейгин Лев Фейгин

Лауреат Международной премии в области нанотехнологий RUSNANOPRIZE 2010

Главный научный сотрудник Института кристаллографии РАН, профессор Лев Фейгин

Питер Лагнер Питер Лагнер

Лауреат Международной премии в области нанотехнологий RUSNANOPRIZE 2010,

Генеральный директор компании Hecus X-ray Systems Gmbh (Австрия), профессор Питер Лагнер

Марина Галкина Марина Галкина

Лауреат Российской молодежной премии в области наноиндустрии,

Старший научный сотрудник научно-исследовательской лаборатории проблем разработки и внедрения ионно-плазменных технологий Белгородского государственного университета, Марина Галкина

Дрю Гафф Дрю Гафф

Управляющий директор и основатель инвестиционного венчурного фонда «Сигулер, Гафф и Ко» Дрю Гафф

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Сергей Гуриев Сергей Гуриев

Ректор Российской Экономической Школы, профессор Сергей Гуриев

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Александр Галицкий Александр Галицкий

Кандидат технических наук, управляющий партнер Алмаз Кэпитал Партнерс Александр Галицкий

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Владимир Познер Владимир Познер

Ведущий пленарной дискуссии, Владимир Познер

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Андрей Гудков Андрей Гудков

Старший вице-президент Центра по изучению рака в Роузвелл-Парк, профессор Андрей Гудков

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Виктор Вексельберг Виктор Вексельберг

Председатель совета директоров группы компаний Ренова, координатор проекта «Сколково» Виктор Вексельберг

Видеозапись панельной дискуссии «Стимулы и барьеры для инноваций»

Пептидные шарики оказались прочнее стали

Прозрачные наносферы, образовавшиеся в результате самоорганизации простых защищенных дипептидов, оказались самым твердым из известных в настоящее время органических материалов.

Группа исследователей из Израиля, получивших пептидные наносферы, отмечает, что их механические свойства превосходят свойства стали и полимера, применяющегося для производства легких средств индивидуальной защиты — кевлара.

Итаи Руссо (ItayRousso) из Научного Института Вейцманна в Реховоте поясняет, что когда исследователи измеряли твердость полученныхнаночастиц, единственным материалом, который смог оставить царапины на поверхности наносфер, был алмаз. Он добавляет, что как он, так и его коллеги были чрезвычайно удивлены, получив столь прочный материал из биологически активных молекул.

Исследовательские группы Руссо и ЭхудаГазита (EhudGazit) из Университета Тель-Авива занялись разработкой этого проекта из-за того, что наноструктуры, в том числе и производные биологически активных молекул, являются перспективными системами для армирования композитных материалов. Такие композитные материалы могут потенциально применяться в различных инженерно-технических проектах будущего — от «космических лифтов» до медицинских имплантатов. Руссо заявляет, что полученные сферы могут быть отличными армирующими материалами, однако от их открытия до практического применения надо пройти еще долгий путь.

Исследователи получили сферы из N-трет-бутоксикарбонилзащищеногодифенилаланина; без введения защиты эта аминокислота является одной из наиболее распространенных аминокислот в составе β-амилоидных белков, образующих в мозгу бляшки, которые являются причиной возникновения болезни Альцгеймера. Ранее Газит с соавторами получал нанотрубки, являющиеся результатом самоорганизации защищенного дипептида; оказалось, что небольшого изменения условий их самоорганизации достаточно, чтобы получить материал, с модулем Юнга (модуль Юнга — коэффициент, характеризующий сопротивление материала растяжению/сжатию при упругой деформации) на порядок большим, чем у первоначально полученных пептидных нанотрубок.

Диаметр полученных сфер лежит в пределах от 30 нм до 2 мкм, они полые, однако диаметр полости израильские ученые не смогли определить. Поскольку модуль Юнга не зависит от толщины материала, в качестве критерия, характеризующего сопротивляемость новых сфер деформации был выбран именно он, и измерения показали, что частицы диаметром 1 мкм, толщина оболочки которых по грубым оценкам составляет 0,4 мкм, характеризуется модулем Юнга 275 гигапаскаль (для кевлара модуль Юнга составляет 130 гигапаскаль, а для стали — 200-210 гигапаскаль).
Руссо и Газит полагают, что, как и для кевлара, прочность материала объясняется тем, что оба материала образованы плоскими молекулами, которые ориентируются параллельно друг другу своими ароматическими фрагментами, образуя сетку прочных π-π-стекинг взаимодействий. Тем не менее, это всего лишь предположение, которое пока еще не подтверждено, хотя уже сейчас известно, что органические молекулы, образующие сферы, находятся в высокоупорядоченном состоянии.

Кеннет Войцеховский (KennethWoycechowsky), специалист по самоорганизации белка из Университета Юта отмечает, что, вероятно строение наносфер будет зависеть от уровня pH, что ограничит возможность их применения, хотя с другой стороны, по его мнению, зависимость строения от рН можно рассматривать как возможность управления свойствами материалов за счет варьирования условий. Войцеховский считает, что в любом случае Газит и Руссо сделали удивительное открытие.

Popnano.ru, 15.10.2010

15.10.2010



Версия для печати   Вернуться в раздел   Вернуться на главную

Дирекция Форума Фонд содействия развитию нанотехнологий
«Форум Роснанотех»
117036, Россия, Москва, проспект 60-летия Октября, 10А
Тел.: +7 (495) 542-44-44,
факс: +7 (495) 988-56-82
e-mail: rusnanoforum2010@rusnano.com
www.rusnanoforum.ru